A Spectral Version of Perry’s Conjugate Gradient Method for Neural Network Training
نویسنده
چکیده
In this work, an efficient training algorithm for feedforward neural networks is presented. It is based on a scaled version of the conjugate gradient method suggested by Perry, which employs the spectral steplength of Barzilai and Borwein that contains second order information without estimating the Hessian matrix. The learning rate is automatically adapted at each epoch, using the conjugate gradient values and the learning rate of the previous one. In addition, a new acceptability criterion for the learning rate is utilized based on non-monotone Wolfe conditions. The efficiency of the training algorithm is proved on the standard tests, including XOR, 3-bit parity, font learning and function approximation problems.
منابع مشابه
A conjugate gradient based method for Decision Neural Network training
Decision Neural Network is a new approach for solving multi-objective decision-making problems based on artificial neural networks. Using inaccurate evaluation data, network training has improved and the number of educational data sets has decreased. The available training method is based on the gradient decent method (BP). One of its limitations is related to its convergence speed. Therefore,...
متن کاملA New Efficient Variable Learning Rate for Perry’s Spectral Conjugate Gradient Training Method
Since the presentation of the backpropagation algorithm, several adaptive learning algorithms for training a multilayer perceptron (MLP) have been proposed. In a recent article, we have introduced an efficient training algorithm based on a nonmonotone spectral conjugate gradient. In particular, a scaled version of the conjugate gradient method suggested by Perry, which employ the spectral stepl...
متن کاملHandwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns
The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...
متن کاملon descent spectral cg algorithm for training recurrent neural networks
In this paper, we evaluate the performance of a new class of conjugate gradient methods for training recurrent neural networks which ensure the sufficient descent property. The presented methods preserve the advantages of classical conjugate gradient methods and simultaneously avoid the usually inefficient restarts. Simulation results are also presented using three different recurrent neural ne...
متن کاملComparative Evaluation of Feedforward and Probabilistic Neural Networks for the Automatic Classification of Brain Tumours
Brain tumours grading is a crucial step for determining treatment planning and patient management. The grade of a tumour is defined by pathologists after reviewing biopsies under the microscope, a procedure that has been proven highly subjective. In this work, we propose a computer-based system for the automatic classification of astrocytomas that can be used as a second opinion tool for the cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002